Out of Body/Out of Mind: 
Scanner artifact detection in open access resting state fMRI.

Clark Johnson1, Nolan Nichols1, Su-Chun Huang1, Thomas Grabowski1, Todd Richards1
1Integrated Brain Imaging Center (IBIC), University of Washington, Seattle 2Contact: cjohnson@uw.edu

Introduction

Functional MRI data is susceptible to scanner and other artifacts that diminish the sensitivity to detect functional brain signals. These sources of data contamination include physiological and transient equipment artifacts such as gradient heating and radio-frequency channel arcing. The objective of this project was to develop a method to detect scanner-generated artifacts using out-of-body (out-of-head) MR signals.

Methods

The Explore-Remove-Scanner-Noise (ERSN) software was developed to detect and characterize MR signal outside the head and use it as a regressor to minimize unintended signal components in the fMRI data.

The software performs the following steps:

1) motion corrects the brain signal (using FSL MCFLIRT);
2) isolates the head and neck signal from non-tissue (out-of-head) voxels using FSL BET along with custom software;
3) defines a mask that contains non-tissue signal within the image space;
4) identifies ICA components using FSL MELODIC that come from the non-tissue signal;
5) generates a diagnostic plot which helps to identify volumes containing unwanted signal characteristics (this plot is called the “Scanner Noise Envelope”);
6) algorithmically determines the number of temporal spikes in the ICA components; these components contain a substantial increase in background/out-of-body MR noise and the volume with the spike is labeled as a suspect volume;
7) filters out unwanted ICA components using FSL_regfilt.

This procedure was applied to 649 fMRI resting-state scans with a TR of 2.0 seconds from the Autism Brain Imaging Data Exchange dataset. (ABIDE, http://fcon_1000.projects.nitrc.org/indi/abide )

The software is open source and available at https://github.com/IBIC/ibicERSN.

* FSL: Smith, Jenkinson, Woolrich, et. al., Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(51):208-19, 2004

Results

Software ERSN identified one or more suspect volumes in 47% of the 649 ABIDE scans tested. As indicated in figure 1, the number of within-scan suspect volumes varied from 1 to 192 (X axis, total N=649). Figure 2 shows an example of a “Scanner Noise Envelope” generated by ERSN which highlighted volume 143 as a suspect volume in an fMRI multi-volume scan. Figure 3 is the display of the ICA component time course that contains the spike shown in Figure 2. Figure 4 shows the spatial distribution of the scanner noise within the out-of-body mask caused by the spike at volume 143. Note that a single slice in this volume has large noise signals

Conclusions

The ERSN procedure may be useful in diagnostically testing the quality of an fMRI scan. The ERSN Scanner Noise Envelope allows the user to quickly determine if any volumes have a noise signature that needs to be examined. This test of the ABIDE data: 1) validated the usefulness of ERSN as a preliminary diagnostic tool that can be easily implemented as a standard quality-control procedure; and 2) demonstrated that there was a wide range in the quality of an example publicly available fMRI data set. The procedure is designed to have a very high sensitivity to changes in scanner noise profile. Further research is required to determine the extent to which the identified noise issues impact fMRI statistical results. A refinement of the procedure would be to automatically separate motion artifacts from scanner-related noise using a clustering algorithm that identifies the noise characteristics; however, the current implementation allows for visual separation of these contributions by examining the spatial characteristics of the noise profile.

Current research focus
What (if anything) do these plots indicate about the scanner

Very slow stabilization: impact on intensities?

Scanner instability: impact on intensities?